
LA-UR--87-2561

DE87 013174

TITLE A 1-D MODEL FOR HIGHLY SENSITIVE TUBULAR REACTORS

AuTHon(s) P. S, Hagan, M. Herskowitz, and J. C. Pirkle

suc’.t!TTc5TO
Proceedings for AIChE Annual Meeting
Session LO: Reaction Engineering and Combustion Prccesses

DISCJLAIMER

This report WW+ preptircd M tin nccount of work qcrmmorod by an agency of the [Jrmcd SIMICS
(iovcrnmcnt, Ncit her !hc ( Jnitcd SIatcR (jovcrnment nor any ●gency therod, nor tiny of [heir
cI,lployees, mdcs uny warranty, cxprem or imphod, or aaaumca tiny legal liability or reqmnai-
hilit) for lhc mxwracy, complctcncaa, or umefulneaa of wry information, upparatus, pruduct, or
proccw diackmcd, or reprcaent; t ha( its uu would no( infringe privutely owned ri$ntrn, Refer-
crwc herein to uny ~pwfic wrmmcrcial product, pro can, or aervi~ hy trndc nume, trHdcmtirk,
m~nufiict urcr, or ot hcrwl.w does not rrcccaaorily COIIhtitutc or imply its cndmcmcru, rccom.
mcndati(m, or [uvortng hy the I)nitcd SImeM (iovctnment or wry qent, !hcrcof, The VICWS

tend opinions of authors cxprcwmd herctn do not ncccaaarily WUIC or reflect thouc U( Ihc
(Jnl(ed Staten (iovermwen! (v any agency thereof,

IL4CX3AUallillT10$$3L.sAlam.s,NewMexi.087545
LosAlamos National Laboratory

Imtubo .j4nd
$! MO l$:g \,,, MASTER ,,,,,,,,,,,~~~~,~,,,!::$,

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



P

) - ;, ,, ;...::%’

/ ‘-”

LOSAlamos Nabd&h

Los Alarnos, New Mexico 8754S

M. Hcrskowitz

Chemical EngineeringDepanrnent

Ben GurionUniversity of the Negev
Beer Sheva, Israel

J. C. Pirkle

Exxon Research & Engineering Co.

Route 22 Em

Annandale, New Jersey 08801

Prepared for presentation at : AIChE Annual Meeting

November, 1987

Session 10 : Reaction Engineering d Combustion Processes



~ We consider the steady state opemhon of w~l-cooled, fixed-bed tubular reactors. In

these reactors the temperature rise AT must normally be limited to small fractions of the adiabatic

temperature rise AT~, both to avoid runaway and maintain product selectivity. Yet

AT/AT2d <c 1 cim only occur if q = t~~tre= << 1 , where t~ti is the timescale on which

heat escapes the reactor by “diffusing” to the cooled walls, and t~aCis the timescale over which the

reaction occurs. So here we use asymptotic methods based on TI<c 1 to analyze the 2-d reactor

equations, and fmd the radial concentration and temperature profdes to leading order in V. We

then obtain a 1-d model of the reactor by substituting these asymptotically correct profdes into the

reactor equations and averaging over r. This model, the a-model, is identical to the standard

(Beek and Singer) 1-d model, except that the reactor’s overall heat transfer coefficient U is a

decreasing function of the temperature rise AT. This occurs because as AT increases, the

reaction becomes increasingly concentrated near r = O, causing a decreased heat transfer efficiency

through the reactor’s walls. By comparing it with numerical solutions of the original 2-d reactor

equations, we fmd that the a-model simulates the 2-d equations very accurmly, even for highly

sensitive reactors operated near runaway. We also find that a runaway criterion derived from the

u-model predicts the mnaway transition of the original 2-d equations accurately, especially for

highly sensitive reactors.



L Intiwim We consider the steady state operation of wall-cooled, fixed-bed tubular reactors.

Due to their cost, these reactors are nonruilly used in industry only for highly exothermic reactions.

For such reactions, the adiabatic temperature rise ATA is typically several hundred degrees K.

Yet reactor runaway occurs when the temperature rise AT reaches roughly RTC2/E [3- 13],

which is typically between 15*K and WK. So usually AT is restricted by

RTc2/EATad CC 11,1 ATfATti -

and, as we shall see, AT/ATad e< 1 can only occur if

where tM is the ti.rnescalc on which heat escapes the reactor by “diffising” to the cooled walls,

and }- is the timescaleon which the reactions occur. So here wc use asymptotic methods based

on q e< 1 to analyze the reactor.

Specifically, in section 2 wc analyze reactors in which a single reaction occurs, md find

the rd.ial concentration and temperature profiles to leading order in q, Then, in section 3 we

derive a 1-d (z only) model of the mtctor by substitutiriz these asymptotically correct profiles into

the reactor equations and averaging out r, This model, the o-model, turns out to be identical w

the standard (Beek and Singer) l-d model [1,2], except that the reactor’s overall hem transfer

coefficient U is not constan~ but is a decreasing function of the temperature rise AT. This

decreased heat transfer efficiency occurs bwuse the reaction, and so the heat generation, become

increasingly concentrated near r = O (away from the reactor wails) M AT incrcmes, und is [he

reiwm for the known unreliability [ 1,5,6] of the Beck and Singer model near runaway, [n secti(vl

3 we compare the et-model with numerical solutions of the original 2-d reactor equations. We



find that the model agrees very well with the 2-d equations, even for highly sensitive reactors

operated near runaway. There, we also compare these numerics! solutions with the runaway

criterion derived from the a-model in [18]. Fins.11y, in section 4 we briefly consider multiple

reitctions, and extend the a-model to these cases.

2-d I@- We choose reactant 1 to be a key reactant and define the conversion

X(ZJ) by

2.1 cVp s ( 1-X)c1(+()

where p is the density of the reacting fluid, and ~ is the molar concentration of species j in the

reacting fluid; throughout subscripts O refer to the value at the reactor inlet z = 0. For the case of

a single reaction, all concentrations can be calculated from !hc conversion [1], so we need only

calculate X. In terms of X, the time-independent, pseud~homogencous reactor equations are

[1,7]

z,~b !Tr) + (-AH)~(X,T)%PocpT’z = Anrr + r

inside the reactor O c r < rr, O < z < L; the bundary conditions iiA.

Xr=o , Tr =(’) at r=O

Xr=o , -ATr = h(T - TC) utr=r~



We assume that the reactants enter at the coolant temperature, so

~a~e X=o , T-T c at 2=0.

In 2.2, 3 is the void fraction of the bed (often denoted by &), U. is the fluid velocity at

z = O, and c is the fluid’s heat capacity. On the right, ~(X,T) is the reaction rate, -AH is the
P

heat release of the reaction, D is the effective radial diffusivity of matter, and A is the effective

radial conductivity of heaL Finally, h is the heat transfer coefficient at the reactor wall.

To nondimensionalize 2.2a - 2.2e effectively, let ~ be a typical value of the reaction

rate. To be definite, we choose

2.3a

Defmc the dimensionless 0(1) reaction rate S by

2.3b S(X,T) = 3(YC,T)/$.

Then in terms of the new variables

2.3G pw = r/rT , ~new = zlL’&loc‘o

the reactor equations become

2,-kl X2 = L (Xt.r +~Xt.)+S(XST) ,Ocrcl
l@

?,-lb VTZ = Tm + :Tr + QS(X,T) ,ocrcl



with

2.4X Xr =0 , Tr =0 atr=O

2.4d Xr=o , -Tr = Y(T-TC) at r= 1

and the initial conditions X =0, T=TC at z=O. Here,

2.5a m = (pocprT2/A)(~/clo)

clearly represents the ti.rrmcalc ratio t~~,

2.5b Le = A/5pOcpD

is the Lewis number, and the constant

has the dimension *K and represents the typical temperature rise in the reactor. Finally,

2.5d dy=hr A

is the reactor’s Biot number. Note that

2.6 Q/q = (-AH)Cl(#fIocp = ATM.

From 2,4b we see that AT can remain much smaller than ATad only if the heat generation is J(



least roughly balanced by the radial diffusion of heat. Since S(X,T) - 0(1), these terns cm ~nIY

balance when AT - O(Q), and thus AT/ATti - O(n). So the physical requirement that

AT/ATad cc 1 implies that q << 1, as expected.

2&l_!3AQiof la1 Since q cc 1, 2.4a shows that the radial diffusion of matter is much more

rapid than the reaction. So to leading order in q, the conversion is constant in r

2.7

2.8a

2.8b

X(ZJ) = x(z) for all r.

To obtain the temperature profde, we set q = O in 2.4b and fmd

(rTr)r + IQS(XT) = O for O<r<l

Tr = O at r=O, -Tr=~T-Tc) ~tr=l

Now this equation can not be solved explicitly for general reaction rates S(X,T). However,

reaction rates generally increase expomnaally in T over limited temperature ranges. So consider

the expansion

2,9a

with

2.9b
U1

around some fixed temperature f. For example, for Amhenius kinetics

2.10



with A = E/R~2. Solving 2.8 with the reaction rate 2.9, we obtain the radial ::mperature

pofile

2.11 T(a,r) = TC + [4a/y - 210g(l-cx+ar2)]/A

where the constant u must satisfy

2.12 8a(l-a)e-4@ =

We shall derive our 14 reactor model by approximating X(z,r) = X(z) and

some a(z) at each position z in the reactor, and then averaging in r. Note

T(zJ) = T(a,r) for

that the Beek and

Singer model is d~ived essenta.lly the same way [1,2], except that the parabolic proilles

2,13 T(Px) = Tc + ~[2/y+l -#]

are used instead of the asymptotically correct profdes 2.11.

T Dy

3.1

To simplify the eventual 1-d model, define the reaction-averaged temperature

s(m) = <S(X,T(a,r))> = S(X,fi<eA(T -m+ ..,>

where ~ ~ denotes the average

3,2 <f(r)> = J; 2r f(r) dr.

With the radial tempmture profile 2.11, 3,1 yields the relation



3.3 4a/Y - log(l-a) = A(T - TC)

between a and the reaction averaged temperature

reactor equations 2.4, and averaging now gives

3.4a Xz = S(X,T)

3.4b q<nz = -8cdA + QS(X,5 .

Now the spatially-averaged temperature <T(c@

~. Substituting X(z) and T(a,r) into the

is very nearly the same as the reacticwtveraged

~. Since q <e 1, we replace <~ by ~ in 3.4b for simplicity. This yields the l-d model:

3.5a Xz = S(X,T)

3,5b qTz = -8afA + QS(X,~) ,

where

3.5C A(X,~) = d$ log S(X,5

and where the dimensionless heat loss o@) is given implicitly by

3.5d 4ctJy - log(l-a) = A(T - Tc) .

Thus, solving 3.5a - 3.5d requires soiving the implicit relation 3.5d to obtain CZat each point

z; usually one Newton step suffices to update a horn the preceding z. Once 3.5a - 3.5d hm

ken solved, then the approximate 2-d solution is



3.5e X(ZJ) = x(z), T(zJ) = Tc + [4cdy - 210g(l-cx+c&]/A

Note that for Arrhenius kinetics, S(X,T) = a(X)e-E~T, A is simply E/R~.

3.1 Cmp.uiui- modf4Wi The only real difference between the a-model

3.5a - 3.5e and the J3eek and Singer model [1,2] is the term 8ct./A, which represents the heat loss

through the reactor walls. To compare the two models, consider the case of Arrhenius kinetics.

Then writing the heat loss in terms of an ovemll heat transfer coefficient U,

3.6 8aR~2/E = 2Un - Tc]

shows that U is a function of the dimensionless temperature rise

3.7a $ = Em - Tc)/R~2

defined implicitly by

3.7b
11

u
~ log( 1- @J/4)

-=y-$u

As shown in figure 1, U($) is always a decreasing function of $ with

3,8 U(0) = (T1 + .25)-1 .

Thus, the heat transfer always increases sublinearly with T- Tc. Now, the Beek and Singer

model is exactly 3.5a, 3.5b with the heat transfer texm 8aR~2/E replaced with the linew term

2U(0)[~ - TC] , So the two models agree when @ << 1 (under “mild” conditions), where the



Beck and Singer model is known to be good [5,6]. Moreover, clearly U($) should decrease

becau?e the heat generation becomes increasingly concentrated near the reactor’s centerline r = O

as the temperature rise increases, which must lead to a decreased heat transfer efficiency through

the reactor walls.

~ The a-model has been tested against the 2-d equations

for specific physical reactors elsewhere [17]. So here we consider only the example of a fmt order

fihenius reaction Al + A2, for which

3,9

due to the scaling 2.3a. 2.3b,

The worst enors in the a-model generally occur in pnxiicting t!!emaximum value of 7(2);

this is not surprising since the reactor’s heat balance can be very sensitive at its hot spot. Thus, we

can rapidly evaluate the a-model’s accuracy by testing its predictions of the peak value of ~(z). To

obtain each graph in figure 2 we f~ed the value of Q/q = ATti and varied q, For each q we

solved me original 2-d equations, the a-model, and the Bcek and Siliger model; we then found

and graphed the maximum value of ~(z) from each calculation. Additionally, figure 3 shows the

full X(z) and T(z) curves for an extreme case, In figure 2, we see that significant errors in the

a-model occur only for the least cxothermic mction considered (figure 2d), and then they occur

only when ~(z) - TCexceeds 50’K. Note that when ~(z) - Tc is 5VK, the value of T(z,r) - TC

is already a severe 8(YK at r = O.

We have tested the a-model on many other examples [16,17], Our general experience is

that the a-model simulates the ori@ml 2-d equations very accurately for highly sensitive reactors

which have sharp runaway transitions as in figures 2a and ?J; for less sensitive reactors which

have “soft” runaway transitions as in figure 2d, significant errors can occur, but only when the



temperature rise AT is very severe. For example, for a single Arrhenius reaction the accuracy

Improves as EATa&RTC2 incrcascs, as RT~E decreases, and as the reaction order decreases.

3.3. ~v~av% Very sophisticated methods have been used to analyze the Beek and Singer model

to develop runaway criteria [4,13], However, these criteria arc necessarily Iimitcd by the accumc y

of the 13eekand Singer model near runaway (see figure 2). In [18] wc obtained a ncw criterion by

using asymptotic methods based on q xc 1 m analyze the more accurate cx-model. For the special

case of Amhenius kinetics

3s10 S(X,T) = a(X)e”E~T

with the maximum of am) occuxzing at X = O (positive reaction order), this criterion predicts

runsway when

3illa qa(0)e-~RTc z
{

g(y)a’(0 2fi$ f(y) 1 + 2.946( ~-@ I ~a(0)
1}

Here e and P depend only on the chemical reaction

3.llb e = RT#, P = EAT~RTc2

and f and g depend only on the Biot number y

3.IIC f = 8~(1.~)e-’$~~,

through

3,1 ld p(y) = &y+2- @Z)



Note that for cqui-molar reactions, la’(0)/a(0)l is just the reaction order,

This criterion can be evaluated readily from peak temperature CLUVCSlike figures 2a - 2d,

which show the reactor’s runal’ Iy transition quite clearly. In figure 2, the points where equality

occurs in 3.11a have been marked with solid points. For the hv~ most exothermic reactions in

figure 2, the runaway transition is quite sharp and the runaway criterion is quite accurate. For the

two least exothcrrnic mactkms, the transition is not sharp, so the point where runaway fmt occurs

cannot be defined precisely, I-nview of this theoretical indeterminacy, the points obtained from

3.11 still seem quite reasonable.

4. ~ Suppose that there am n reactions occurring in the reactor, Then all

concentrations can be expressed in terms of n variables X = (Xl, X2, .... X“), each measuring

the extent of one of the reactions. Sirnilur to 2.4a =2.4d, the dimensionless reactor equations can

be written as

4,1il

4,1b
J

for 0< r <1, with the same boundary conditions

wc approximate the teinperaturc dependence of the

then 2.11 gives the asymptotically correct profiles

reactor equations and averaging over r yields:

~,~~ xj s sj(x,~ j

4,2b q$z = -8cdA + Z QNM)
j

j = 1,,.., n

2.4c, 2.4d as before. To obtain the a-model

total heat release Z QW K,T) as cxponcntiol;

T(a,r); and substituting these profiles into the

= 1, ,,c,n



where

42C A(X,~) = -$log [Z @SJ(X,~)]

and where a is determined by

4,2d 4a/y - log(l-a) = A(T - TC).

Once 4.2a - 4,2d have been solved, then the approximate 2-d solution is

XJ(ZJ) s Xj(z), T(z,r) = Tc + [4ct/y - 210g(l-wxr2)]/A ,

This model has been tested with experimentally derived reaction schemes in [17,19], So

here wc consider the example of two fret-order Amhenius reactions Al + A2, ~~~+ A3, with

the second reaction having twice the activation energy of the fret, and with both reactions releasing

equal amounts of heat, so Q 1= @ = Q, We also choose the reaction rates

4,2e

Km = .80( 1-X1-X2)e”E~Te+E~TC

~X,T)= .20(1 -Xl -X2)e-E~Te+E~T’C

so that the second is 25% of the fwst at T = Tc, As in figure 2, in figure 4 we graph ihe pctik
m

wdue of T(z) as a function et’ q with Q/q = dTrd held fixed, The accuracy of the a-model f~w

this case should not be surprising since the reactor is cIearly extremely sensitive.

~~ The I-model und runaway criterion have been tested on m;my other cxumplcs it]

[16-191. In purticulur, in [18] we observe that the maximum feasible reaction rutes occur when the

rmctor reaches runaway, So there we use the mnuwny criterion to determine the thcore[ic$iilIitllits



on the reactor’s performance.

We have found the cx-model, the runaway criterion, and the theoretical limits to be useful

in rapidly screening potential reactor designs and operating conditions to assess relative reactor

performances and sensitivities. OnCc the final design and operating conditions have been settled,

we have then solved the 2-d equations to verify the predictions of the model,
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- ~e dimensionless heat transfer coefficient U($) and heat IOSS a($).

- me pc~ v~ue of T(z) in the reactor as a function of q. Shown are the predictions of

Lbe a-model (a), the Beck and Singer model (s), and the exact values from the 2-d equations (e),

There are no signi.flcant differences between the predictions of the a-model and the 2-d equations

in figures 2a-2c. The values of P = EQ/rlRTC2 = EATa~RTc2 are 40, 20, 12, and 8 i~

figures 2a-2d, respectively, The other parameter values are RT~E =, 10, y= 4.8, Tc = 500”K,

and L.c= 1.25,

- The wi~ profiles ~(z) and X(z) from the a-model (a), the Beck and Singer
model(s), and the exact values (e). The values EAT#Tc2 = 20 and q =.12 have been chosen

so that the reactor is very near runaway (see figure 2b), causing a very pronounced hot spot. The

other parameter values are as in figure 2.

- The peak va!ue of ‘f’’(z)in the reactor as a function of ~ for two simultaneous

fret-order reactions (see equation 4,3). Shown are the predictions of the a-model (a), the Beck

and Singer model (s), and the exact values (e). There is no discemable difference between the

exactvalues /andthe predictions of the a-model. The parameters are EATti/RTC2 = 20,

RT~E = ,10, y= 4,8, TC= 50(YK, and & = 1,25,
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